
MPISH2: Unix Integration for MPI Programs

Narayan Desai, Ewing Lusk, Rick Bradshaw

Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL 60439

Abstract. While MPI is the most common mechanism for expressing
parallelism, MPI programs remain poorly integrated in Unix environ-
ments. We introduce MPISH2, an MPI process manager analogous to
serial Unix shells. It provides better integration capabilities for MPI pro-
grams by providing a uniform execution mechanism for parallel and serial
programs, exposing return codes and standard I/O stream information.

1 Introduction

The shell is the most familiar interface to Unix systems. In general, it is the first
contact that users have with Unix systems. Its ubiquity makes it the dominant
mechanism through which command execution occurs.

Unix shells provide a rich environment for task automation, exposing com-
mand exit codes, providing control flow constructs, and organizing disparate
programs into complex command pipelines. Users are familiar with the decom-
position of complex tasks into the invocation of single-function utilities using
these mechanisms.

While MPI is not as ubiquitous as Unix shells, it is the dominant mechanism
used to express parallelism in scalable applications. Many high-performance im-
plementations of MPI exist; indeed, MPI is so pervasive that a good MPI im-
plementation is frequently cited as one of the requirements for new large-scale
computational science machines.

Unfortunately, process management systems that can start MPI programs
have not provided or exposed sufficient information for their composition with
their serial analogues or even with each other. To address this issue, we have
implemented MPISH2, a MPI process manager that provides a user interface and
composition capabilities nearly identical to the Bourne shell.

2 Related Work

Unix shells have long been studied. Starting with the original shell included with
early Unix systems [14], shells have been augmented into relatively full-featured
programming languages, including data types [9]. Because of the familiarity of
the shell interface to Unix users, many attempts have been made to present a
shell-like interface for program execution on parallel systems.

– PDSH [12] is a program that uses rsh or ssh to execute tasks in parallel on
many systems.

– The C3 tools [8] provide a similar execution mechanism that also runs tasks
through rsh.

– Gridshell [15] provides a shell-like interface that enables access to Grid re-
sources, including the queueing of jobs. It doesn’t natively support the ex-
ecution of parallel process; rather, it is subject to the limitations of the
underlying resource management system used to implement this functional-
ity.

These tools do an admirable job of starting processes scalably; however, they
do not expose any of the Unix process information needed to embed parallel
commands in more complex execution units. Discrete exit statuses are not re-
turned for each process executed. Most important, none of these tools supports
MPI process startup.

Historically, MPI startup mechanisms have scaled poorly and performed
badly overall [5]. Two systems have addressed these issues over the past sev-
eral years.

– MPD [4] uses a group of daemons, arranged in a ring topology, to scalably
start MPICH2 processes.

– YOD [2] provides similar capabilities in the Cplant software stack.

Both of these process management systems provide highly scalable process
startup services needed to start MPI processes, but neither system provides
adequate information for use in shell-style programming. MPD provides access
to all exit statuses and to standard I/O multiplexed into single streams. YOD
provides similar access to standard I/O but fails to provide any access to return
codes.

The work we present here has been motivated largely by the gains in sys-
tem software scalability afforded by the use of MPI in system tools [6,7]. This
approach also has proven quite positive in terms of overall performance gains.
More surprising, tools implemented by using MPI-based scalable components
have proved far easier to troubleshoot and debug than their ad hoc analogues.
The need to execute large numbers of small scalable tools brings execution issues
clearly into focus.

3 Design

When we were considering how to integrate MPI programs into a Unix envi-
ronment, our highest priority was to retain standard Unix shell semantics. The
overall goal was to support the execution of parallel programs using an inter-
face indistinguishable from that used for serial programs. With such a uniform
execution interface, parallel reimplementations of serial utilities could be auto-
matically used by existing scripts.

The Bourne shell [1] was chosen as the language basis for our shell. Two
major aspects of the Bourne shell are important: process semantics and con-
trol flow constructs. Unix process semantics provide access to information about
child processes, including access to return codes, the ability to setup child pro-
cess environment variables, and the ability to arrange commands into command
pipelines that run concurrently. However, this data is available only for child
processes that have been directly started. Without the existence of a Unix par-
ent/child relationship, this information is not available and cannot be influenced
in any way. Hence, the preservation of this relationship was an important design
goal.

The control flow constructs available in the Bourne shell are fairly standard,
including while, if, for, and case. Since these are the real workhorses of shell
scripting, we attempted to keep their semantics as close as possible to the Bourne
shell. However, minor enhancements were required in order to support startup
of parallel processes.

3.1 MPISH2: A Parallel Shell

The difference between a normal shell and MPISH2 is that MPISH2 is a parallel
program, consisting of multiple communicating Unix programs. A shell script,
given to MPISH2, is executed by all of the MPISH2 processes. The MPISH2 pro-
cesses communicate with each other (in a scalable fashion) using MPI. That
is, MPISH2 is itself an MPI program. Therefore, MPISH2 must be started by the
startup mechanism of the proper MPI implementation. We assume in this paper
that mpiexec invokes this mechanism. Thus, a 100-process instance of MPISH2
is started by a command line something like the following.

mpiexec -n 100 mpish2

In a cluster environment, the specification of which nodes MPISH2 is run
on depends on the particular MPI implementation being used. We have used
MPICH2 [11], but MPISH2—being an MPI program—can be run by using any
MPI implementation. Note, however, that because of the nonstandard nature of
MPI startup, programs started by MPISH2 must use MPICH2.

MPISH2 scripts are Bourne-shell scripts (with some extensions described in
Section 3.2) that are presented to the standard input of each MPISH2 process.
MPISH2 must be parallel in order to properly provide all information about child
processes. For example, using a traditional MPI process manager to run two
parallel programs in a pipeline would look like the following.

mpiexec -np 10 prog1 | mpiexec -np 10 prog2

This command runs prog1 and sends the standard output of the first mpiexec
to the second invocation of mpiexec. Handling of standard output is not specified
by the MPI standard; however, many MPI process managers provide multiplexed
standard output from all processes to the standard output of mpiexec. Likewise,

mpiexec typically, though not universally, sends standard input of mpiexec to
some number of the parallel process instances.

Under MPISH2, a similar command is used, together with a process manage-
ment system for MPISH2 startup.

mpiexec -np 10 mpish2

Once MPISH2 is running, a command pipeline can be executed by using the
following script.

prog1 | prog2

This script is run by every MPISH2 instance, resulting in 10 instances of both
prog1 and prog2, connected rankwise into a pipeline. That is, standard output
produced by the rank 0 instance of prog1 is fed into the standard input of the
rank 0 instance of prog2, and so forth. Additional utilities are provided, allowing
interrank manipulation of I/O streams. These execution semantics provide more
flexibility than those afforded by traditional process management systems.

3.2 Enabling Parallelism

Parallel process managers work in much the same way as serial process man-
agers. They are responsible for post-fork/pre-exec process setup and the setup
of standard I/O. The main difference between serial and parallel process man-
agers is the need for parallel library bootstrapping. This bootstrapping consists
of two main parts: the description of the parallel process topology and the com-
munication setup.

Many mechanisms describe initial process topology at the time of parallel
process startup. Typically, the topology specification consists of process count
and some set of resources, usually a list of nodes on which the processes should
be executed. This corresponds closely to the common arguments to mpirun.
Alternatively, one can use mpiexec, specified by the MPI standard [10], for sup-
plying the same data. Whatever the input format, this information is used for
the same purpose: the description of MPI COMM WORLD for the new pro-
cess. Each communicator has a specific size, and each component process has a
specified rank in that communicator. This initial topology description is what
differentiates one 32-node program from thirty-two 1-node programs.

MPISH2 describes the initial communicator in terms of the parallel execution
context of the client program. The notion of control flow groupings is maintained
across the parallel shell. For example, if a parallel program is run on the first
line of a script, it will be run on all processors, with an initial communicator
identical to MPI COMM WORLD of the parent shell. Control flow constructs
all affect this execution context for parallel programs. Their behavior can be
most easily described in terms of MPI Comm split:

– if performs a two-way split, corresponding to the truth value of the predicate.
Programs run in either branch will be grouped into parallel processes with

the other processes executed in the same branch. For example, when if is
executed in an 8-process context, resulting in a 4-node true, 4-node false
split, processes run in the true branch will be grouped into 4-node parallel
processes with the other processes executed on the true branch. Similarly,
the processes executed on the false branch will be grouped into a 4-process
parallel process with the others started on the false branch.

– case performs an N-way split, operating similarly to if.
– while creates an execution context corresponding to all ranks for which

the condition evaluates as true. All programs run in each iteration will be
grouped according to this initial evaluation. The condition will be evaluated
at the start of each iteration, continuing until all ranks evaluate false.

– for has no effect on parallel execution context because it is not conditional.

Note that each control flow statement now implicitly includes a synchro-
nization barrier at its conclusion. This approach has the distinct advantage of
retaining the character of serial Bourne shell control flow operations. In fact, for
one-node executions of MPISH2, the behavior is precisely that of a serial Bourne
shell.

The second important aspect of parallel process startup is communication
bootstrapping. For disparate processes to begin acting as a single parallel entity,
communication must be established. This is accomplished in different ways with
different parallel libraries. MPICH2 uses an interface called PMI, or Process
Manager Interface, to provide this information to client programs. PMI takes the
form of a distributed database, providing standard put, get and fence operations.
The client program is provided with connection information for its PMI instance
and can use that data to connect to other processes.

4 Implementation

The implementation of MPISH2 is based on a modified version of the Minix [13]
shell, included with Busybox [3]. Three main modifications have been made.

The first was driven by the fact that MPISH2 is a parallel, not serial, process.
A parallel execution context—that is, a grouping of discrete processes in order to
form a parallel process—must be tracked on each instance of MPISH2. Initially,
it corresponds to MPI COMM WORLD; however, as the script executes, the
execution context is modified by control flow constructs, as described in Sec-
tion 3.2. Changes in the parallel execution context are tracked by using an MPI
communicator. This communicator is passed to any new PMI instances created,
thereby maintaining cohesion between parallel processes executed in the same
context.

The second modification was the creation of a PMI implementation to service
requests from client processes. In order to support parallel library bootstrapping,
a discrete PMI implementation is provided for each program started by the shell.
Setup of this instance consists of initial data structure creation and socket setup.
During client execution, the client program will connect and submit commands.

Many of the commands, like put, which stores a value in a distributed database,
will be serviced locally; however, some, like get, or fence may require communi-
cation with other parts of the same PMI instance. All communication operations
are implemented by using MPI collective and asynchronous operations. Fence is
implemented by using MPI Barrier. The implementation of get is more compli-
cated. When a PMI instance receives a get request, it checks whether the value
is already stored locally. If it is, the request is immediately serviced. If not, a
message is sent to the PMI instance with the next higher rank. Each process
also receives queries for unknown values asynchronously. If the local process has
the value, it responds to the querier; otherwise, it forwards the request to the
next rank in the PMI instance. Disparate PMI instances in the same MPISH2 in-
stance are differentiated based on a private communicator. This communicator
is MPI Comm dup’ed at PMI instance initiation time, so each PMI instance has a
unique one.

The third, and perhaps most complex, modification was to the control flow
construct to provide topology descriptions for client processes. In a typical serial
shell, control flow constructs use only return codes and have no side effects. In
MPISH2, however, control flow constructs also affect the parallel execution context
by calling MPI Comm Split after predicate execution. For example, in serial shells,
the shell executes the if predicate and either the true or false branch depending on
a zero or nonzero return code, respectively. MPISH2 executes the same operations,
but with the addition of a call to MPI Comm Split using zero/nonzero exit status.
Other control flow constructs were similarly modified.

None of these modifications proved complicated, and the overall semantics of
the MPISH2 remains very close to the semantics of the Bourne shell. At the same
time, these modifications provide a wealth of new capabilities to Unix users.

4.1 Utilties

A parallel execution environment isn’t really complete without a set of parallel
programs useful for writing basic programs. These programs are analogous to
test or wc for serial shells. We have implemented a variety of small utilities,
suffixed with the .mpi extension, to address this issue. The following is a list of
basic parallel commands, with a short description of each.

– rank.mpi displays the process’s rank in the current execution context.
– size.mpi displays the size of the current execution context.
– once.mpi exits with a return code of 0 once per physical node present.
– zoom.mpi provides access to scalable numeric reductions for the provided

argument.
– pflatten.mpi sends all stdout streams to process 0.
– ptee.mpi forwards stdin from process 0 to all processes. It functions like a

parallel version of tee.
– pcoalesce.mpi coalesces stdout from all nodes, producing rank delimited

lines on processor 0.

– bcast.mpi broadcasts the data from one process, specified as an argument,
to all other processes. This data is produced on stdout.

– stagein.mpi downloads a file from a http server and broadcasts to all nodes,
eventually writing it to disk on each.

– stageout.mpi uploads files, tagged with rank, to the fileserver from all
clients.

– rsync.mpi synchronizes files from process 0 to all other processes. This pro-
gram can handle all regular and special files.

– time.mpi times the execution of a parallel program, producing a single wall
time result.

Each of these programs is a simple MPI program. Nothing special is required
to write a utility, as MPISH2 can run arbitrary MPI programs.

5 Use

MPISH2 is useful across the same broad range of problems as are standard shell
scripts, with the added ability to run concurrent, parallel programs. It can easily
be used for tasks ranging from the most trivial to those that can strongly benefit
from access to parallelism and scalable tools.

5.1 Examples

The following examples illustrate various language features.

Basic Parallel File List The first example copies the file from one source to
all machines. The find command produces a list of files on standard out and
ptee.mpi replicates this I/O stream to all other ranks. Each rank writes runs
ls on each of these files.

find /path -type f | ptee.mpi | xargs ls -l

5.2 Basic Collective Diagnostics

The second example runs the command fix network on the node with the high-
est network interface error count.

max.mpi get_net_err_cnt
if [’’${?}’’ -eq 0] ; then

fix_network
fi

Job Script The third example is a job script for a queueing system. This script
runs the prologue, epilogue and file staging commands once per physical node
(hostname). Of these commands, the prologue and epilogue are serial, while the
file staging commands are parallel. Once setup has completed, the user job is
run (under the user’s UID), and cleanup is performed. Not only can serial and
parallel programs be interchanged, but standard shell scripting mechanisms (like
the use of su) can also be used with parallel programs.

#!/usr/bin/env mpish2
user="${1}"
userscript="${2}"
indir="${3}"
outdir="${4}"

once.mpi
once=’’${?}’’
if [‘‘${once}’’ −eq 0] ; then 10

run the prologue once per node
/usr/sbin/prologue
if [! −z "${indir}"] ; then

su "${user}" stagein.mpi "${indir}"
fi

fi

su "${user}" mpish2 "${userscript}"

20

if [‘‘${once}’’ −eq 0] ; then
if [! −z "${outdir}"] ; then

su "${user}" stageout.mpi "${outdir}"
fi
/usr/sbin/epilogue

fi
Several active execution contexts are used in this program. Two instances of

a context containing each physical node are created by the script. The first is
used for job setup (e.g., prologue and file staging), and the second is used for
job cleanup. The user’s job script is executed in the global execution context.

Benchmarking Scripts The fourth example provides a basic illustration of
concurrency. Benchmarking scripts are often implemented as a for loop that
sequentially executes program runs with different sizes, for example, a script
such as the following.
#!/bin/sh
for i in 2 4 8 16 32; do

time mpirun −np $i program

done
Such a script does a reasonable job of running benchmarks; however, numer-

ous processor resources are wasted in the first few iterations of the loop if the
full number of nodes is reserved for the full duration of the execution.

This process can be run far more efficiently if test cases are executed concur-
rently. First, the application is run on all nodes. Second, the nodes are grouped
into partitions, each with a different power of two size, up to half the total num-
ber of nodes. Each of these partitions runs a different size test case concurrently.
The following example is a concurrent benchmarking script. It is assumed that
the script is run on largest size being benchmarked, in this case 32 nodes.

#!/usr/bin/env mpish2
rank=‘rank.mpi‘

slot="0"
basenum="2"
count="1"

time.mpi −t "size=32" progname
10

while ["$slot" −eq "0"] ; do
remainder=‘expr "$rank" − "$basenum"‘
if ["$remainder" −lt "$basenum"] ; then

slot="$count"
else

basenum=‘expr "$basenum" "*" "2"‘
count=‘expr $count + 1‘

fi
done

20

case $s!ot
1)
time.mpi −t "size=2" progname
;;

2)
time.mpi −t "size=4" progname
;;

3)
time.mpi −t "size=8" progname
;; 30

4)
time.mpi −t "size=16" progname
;;

esac

6 Conclusions and Further Work

We have presented MPISH2, a parallel process manager for MPI programs that
provides an interface almost indistinguishable from the standard Unix Bourne
shell. It enables the use of MPI in Unix environments in a seamless manner not
previously possible. The addition of scalable utilities and simple, Bourne shell
style control to Unix environments enables a variety of system and user tasks to
be implemented in a scalable and elegant fashion.

The current design and implementation have two main limitations. The first
is that all control flow constructs now impact parallel execution context, so serial
conditional execution must be separated from parallel conditional execution. The
second limitation is that control flow constructs have implicit barriers around
them. This can reduce the amount of concurrency available to users. Both of
these issues bear further examination.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-
109-ENG-38.

References

1. S. R. Bourne. An introduction to the unix shell. Bell System Technical Journal,
57(2):2797–2822, Jul-Aug 1978.

2. Ron Brightwell and Lee Ann Fisk. Scalable parallel application launch on cplant.
In Proceedings of SC 2001, 2001.

3. Busybox home page. http://www.busybox.net.
4. R. Butler, N. Desai, A. Lusk, and E. Lusk. The process management component

of a scalable system software environment. In Proceedings of IEEE International
Conference on Cluster Computing (CLUSTER03), pages 190–198. IEEE Computer
Society, 2003.

5. R. Butler, W. Gropp, and E. Lusk. A scalable process-management environment
for parallel programs. In Jack Dongarra, Peter Kacsuk, and Norbert Podhorszki,
editors, Recent Advances in Parallel Virutal Machine and Message Passing Inter-
face, number 1908 in Springer Lecture Notes in Computer Science, pages 168–175,
September 2000.

6. Narayan Desai, Rick Bradshaw, Andrew Lusk, and Ewing Lusk. MPI cluster sys-
tem software. In Dieter Kranzlmuller, Peter Kacsuk, and Jack Dongarra, editors,
Recent Advances in Parallel Virutal Machine and Message Passing Interface, num-
ber 3241 in Springer Lecture Notes in Computer Science, pages 277–286. Springer,
2004. 11th European PVM/MPI Users’ Group Meeting.

7. Narayan Desai, Andrew Lusk, Rick Bradshaw, and Ewing Lusk. MPISH: A parallel
shell for MPI programs. In Proceedings of the 1st Workshop on System Management
Tools for Large-Scale Parallel Systems (IPDPS ’05), Denver, Colorado, USA, april
2005.

http://www.busybox.net

8. R. Flannery, A. Geist, B. Luethke, and S. L. Scott. Cluster command & control
(c3) tools suite. In Proceedings of the Third Distributed and Parallel Systems
Conference. Kluwer Academic Publishers, 2000.

9. David G. Korn, Charles J. Northrup, and Jeffery Korn. The new Korn shell. The
Linux Journal, 27, July 1996.

10. Message Passing Interface Forum. Document for a standard message-passing inter-
face. Technical Report CS-93-214 (revised), University of Tennessee, April 1994.
Available on netlib.

11. MPICH2. http://www.mcs.anl.gov/mpi/mpich2.
12. Pdsh:parallel distributed shell. http://www.llnl.gov/linux/pdsh/pdsh.html.
13. Andrew Tannenbaum. Operating Systems, Design and Implementation. Prentice

Hall, 1987.
14. K. Thompson. The unix command language. Structured Programming, pages 375–

384, 1975.
15. E. Walker, T. Minyard, and J. Boisseau. Gridshell: A login shell for orchestrating

and coordinating applications in a grid enabled environment. In Proceedings of the
International Conference on Computing, Communications and Control Technolo-
gies, pages 182–187, 2004.

http://www.llnl.gov/linux/pdsh/pdsh.html

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (”Argonne”) under Contract No.
W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irre-
vocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or
on behalf of the Government.

